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Abstract

The concept of local realism entails certain restrictions concerning the possible occurrence

of correlated events. Although these restrictions are inherent in classical physics they have

never been noticed until Bell has shown in 1964 that in general correlations in quantum

mechanics can not be interpreted in a classical way. We demonstrate how a local realistic

way of thinking about measurement results necessarily leads to limitations with regard to the

possible appearance of correlated events. These limitations, which are equivalent to Bell's

inequality can be easily formulated as an immediate consequence of our discussion.

1 Introduction

Local realism denotes a certain way of thinking about the origin of experimental results which

can be specified by the concepts of locality and reality as defined in the EPR paper [1]. For a

system consisting of two spatially separated parts (e.g. in a singlet state) locality means that,

"since at the time of measurement the two systems no longer interact, no real change can take

place in the second system in consequence of anything that may be done to the first system." As a

criterion for reality EPR give a reasonable proposition which reads as follows: "If, without in any

way disturbing a system, we can predict with certainty (i.e. with probability equal to unity) the

value of a physical quantity, then there exists an element of physical reality corresponding to this

physical quantity."

Generalizing the EPR reality criterion in such a way that with regard to the singlet state

(Bohm's version) the result of any spin-measurement has to be considered as predetermined, Bell

has shown in 1964 [2] that local realism as defined above is "incompatible with the statistical

predictions of quantum mechanics."

By applying the concepts of local realism to a three particle system, D.Greenberger,M.Horne

and A.Zeilinger [3] (see also [4]) have shown that in this case a clear cut contradiction can.be

deduced on the level of perfect correlations. Although this approach provides the most expressive

demonstration of the incompatibility of local realism with quantum mechanics it does not work

for two-particle systems. There the incompatibility arises just on the statistical level. Hence

an intuitive understanding of the contradiction between the idea of local realism and quantum

mechanics is difficult, if one is not aware of the origin of this contradiction.

One attempt in order to demonstrate the basic idea of Bell's proof in a more expressive way

has been made by E.P.Wigner [5], who derived a specific form of Bell's inequality by using only
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simple settheoretical arguments. Recently another attempt has been made by Lucien Hardy [6]

who showed that the probability for a contradiction of the GHZ-kind can be greater than zero for

a two-particle system.

Nevertheless none of these approaches has provided a general argument based on the concepts

of locality and reality which explicitly demonstrates the origin of the discrepancy between local

realism and quantum mechanics. Thus our aim is to show the essential restrictions of local realism

by discussing the results of a general two-particle experiment using the assumptions of locality and

reality. As evident consequences the conditions for the fulfilment of these restrictions are equivalent

to Bell's inequality.

2 Predictions based on the knowledge of correlations

We consider the following experimental setup (cf. Fig. 1): A source emits the two parts of a

system in opposite directions. Measurements with the possible results +1 and -1 are performed

on each part by two observers A and B. Each of them may select one of two possible values of a

measurement parameter a and fl, respectively. As a consequence four different experiments can

be made, corresponding to the four different combinations of the measurement parameters c_1, a2

and ill,/32-
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FIG. 1. The experimental setup consists of a source which emits the two parts of

a system in opposite directions. Measurements with the possible results +1 and -1

are performed on each part by two observers A and B. Both A and B have a knob

which selects one of two possible values of a measurement parameter. In such a way 4

different experiments can be made (cf. table I).

We assume that all four experiments have been made. The results are listed in table I.

TABLE I. The correlations of the results of the 4 experiments are listed. They m_ht

have been observed in actual experiments or calculated by quantum mechanics. P_" is

the probability for different results in experiment i. In consequence the probability for

equal results P_ is 1 - P/#.

Experiment

1

2

3

4

A
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B
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Correlation
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In experiment 1 with the parameters adjusted to al and 31 the observers A and B got different

results with probability P_¢. In experiments 2, 3 and 4 the probabilities for different results are

P2¢, P3¢ and P4¢, respectively.

Knowing the correlations which have to be expected either from previous experiments or

quantum mechanical calculations, A is able to predict the possible results of B and vice versa.

This means that after A has for example performed a series of n measurements with the setting

t_l he can infer all possible results of B on the basis of his experimental data and the knowledge

of the correlations in experiments 1 and 2 by the following reasoning.

A
Act I B I}1 c_2
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I I I
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-1

A's predictions by 1 A's predictions by

changing n2signs -1 changing n I signs
of his results " of l_s results

I " J
A's data

I I I

f

I I I

I I I

Predicted results of experiment 4

FIG. 2. A procedure is shown by which observer A (B) after having performed

a series of n measurements is able to predict the results of observer B (A) for the

two alternative settings of the measurement parameter _ (a). The actually measured

results of observers A and B are listed in the two boxes• By changing a corresponding

number of signs (hi = P_¢ • n for experiment i) of the measured results the predictions

are in agreement with the calculated or previously observed correlations listed in table

I. Nevertheless it turns out immediately that the predicted results of experiment 4

are consistent with the actual correlations of experiment 4 (cf. table I) only if the

inequality n, + n_ + n 3 > n 4 (equivalent to Bell's inequality) is fulfilled.
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If B selects the parameter/31 (experiment 1) the probability for different results has to be P_# (cf.

table I). For n _ oo this means that nl = Px# • n results have to be different. By reversing nl

signs of his results A arrives at a series of possible results of B which correspond to the known
": different ways of changing rtl signs of n numbers A endscorrelations. Because there are ,,,_(_--_)!

'_! different predictions for the possible outcomes of B's measurements. Inup with a list of ,_,!(n-,_,)'
the same way A is able to infer the possible results B could get, if B selects 82 (experiment 2) by

changing n2 = P2# • n signs of his results. In Figure 2 the results of A are listed in the box in row

Aol. The predictions he derives from these data are symbolized by vertical lines in rows Ba_ and

B&. Each line corresponds to one way of changing nl and n2 signs, respectively. By this means

the predicted results correspond to the known correlations.

Now let's assume that observer B actually selects the parameter 81 and performs a series of n

measurements. In figure 2 his results are listed in the box in row Bal. Of course they correspond

to one of the predictions by A.

Not knowing what A has done observer B himself predicts all possible results A could get if

he selects the parameter al (experiment 1) or a2 (experiment 3) (cf. table I) by considering all

possible ways of changing nl or n3 signs of his results. Again the actual results of A correspond

to one of the predictions by B as it is shown in figure 2.

3 Bell's inequality

In the previous section we have shown how it is possible for A to predict all results B could

obtain and vice versa. In the following we are going to apply the locality assumption that "no real

change can take place in the second system in consequence of anything that may be done to the

first system" [1]. Moreover we assume in agreement with realistic approaches that "unperformed

experiments have results" [7] or in other words that predicted results have the status of potential

reality.
If we now ask what A could have measured if he had selected the parameter ct2 (experiment 3)

instead of al (experiment 1), we just have to take into consideration the predictions by observer

B to find the answer. Based on his actual results and the known correlation in experiment 3 (cf.

table I) observer B has predicted all results A could have got if he had chosen a2 (cf. figure 2). As

a consequence of the locality assumption the results of B, which are the basis of his predictions,

are independent of anything that may be done by A. Because of this independence all of B's

predictions have the status of potential reality, which means that if A had selected a2 he actually

would have got one of the results predicted by B.

In the same way we find the answer to the question what B could have measured if he had

selected the parameter 82 (experiment 2) instead of 81 (experiment 1) by considering the predic-

tions by observer A (cf. figure 2). It is important to notice that because of the locality assumption

we can make independent use of the predictions by B and A to answer the question what A and

B could have measured if they had selected a2 and fi2, respectively.

Since we know all possible results A and B could have got if they had chosen et2 and 82,

respectively (experiment 4), we may now try to find out if these results are consistent with the

known correlation of experiment 4 P4# (cf. table I). For this purpose we take one of the results B

could have got if he had selected fi2 (row B_ in figure 2), change n2 signs to get the actual results
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of A (box in row A_), change nl signs to get the actual results of B (box in Ba_ ) and change n3

signs to end up with one of the results A could have got if he had selected a2 (row A_ 2 in figure

2). Of course we could also do the same thing the other way round but anyway the results A

could have got are connected to the results B could have got by the following transformation rule

(cf. figure 2): Reverse n2 signs in the first, n, signs in the second and n3 signs in the last step

or the other way round. Doing this the maximum number of signs one can change is simply

n: + n2 + n 3. This result of local realistic reasoning is consistent with the observed correlation

in experiment 4 if and only if n, + n2 + n3 _ n4 = P4# • n. If this condition is violated, then

not a single pair of the predicted results of experiment 4 (cf. figure 2) is correlated in agreement

with experience because there is no pair with more than n, + n2 + n3 different signs.

It follows immediately that this condition is equivalent to Bell's inequality:

n, + n2 + n3 _ n4

J[P_# = 1 i= 1,2,3,4+ P_

1 - P_ + 1 - P_ + 1 - P_ > 1 - P_ (2)

_E_ = P7 - = 1,2,3,4
i

IE, (3)
We get (3) by adding inequalities (1) and (2) and using the definition of the expectation value of

the product of the results Ei in experiment i (i = 1,2,3,4).

4 Discussion

We have shown that just by discussing the possible results of a general two-particle experiment

in a local realistic way one is directly led to a condition for the consistency between quantum

mechanics and the concept of local realism.

The crucial point in the argumentation is on the one hand the assumption that A's and B's

data are determined locally, which means that A's (B's) results are completely independent of

the measurement parameter selected by B (A). On the other hand by assuming that unperformed

experiments have results A's and B's predictions can be combined in order to get a prediction of

experiment 4 (unperformed). It turns out that this kind of counterfactual reasoning is inconsistent

with the results one obtains by actually making experiment 4.
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